Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.906
Filtrar
1.
PLoS One ; 19(4): e0289644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598436

RESUMO

Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%->53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Água , Sistema X-AG de Transporte de Aminoácidos/genética , Aminoácidos/química , Proteínas de Membrana , Mutação , Biologia Computacional , Glutamatos
2.
ACS Chem Neurosci ; 15(6): 1276-1285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454572

RESUMO

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.


Assuntos
Ácido Aspártico , Receptores de Hidrocarboneto Arílico , Ácido Aspártico/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sódio/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Células Cultivadas
3.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451201

RESUMO

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Córtex Auditivo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Neuroproteção , Zumbido/tratamento farmacológico , Zumbido/metabolismo , Ácido Glutâmico/metabolismo , Modelos Animais de Doenças , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
4.
Glia ; 72(6): 1082-1095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385571

RESUMO

Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.


Assuntos
Epilepsia , Vesículas Extracelulares , MicroRNAs , Humanos , Astrócitos/metabolismo , Proteína Quinase C-delta/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo , Ácido Glutâmico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo
5.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
6.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37963762

RESUMO

Spasticity is a hyperexcitability disorder that adversely impacts functional recovery and rehabilitative efforts after spinal cord injury (SCI). The loss of evoked rate-dependent depression (RDD) of the monosynaptic H-reflex is indicative of hyperreflexia, a physiological sign of spasticity. Given the intimate relationship between astrocytes and neurons, that is, the tripartite synapse, we hypothesized that astrocytes might have a significant role in post-injury hyperreflexia and plasticity of neighboring neuronal synaptic dendritic spines. Here, we investigated the effect of selective Rac1KO in astrocytes (i.e., adult male and female mice, transgenic cre-flox system) on SCI-induced spasticity. Three weeks after a mild contusion SCI, control Rac1wt animals displayed a loss of H-reflex RDD, that is, hyperreflexia. In contrast, transgenic animals with astrocytic Rac1KO demonstrated near-normal H-reflex RDD similar to pre-injury levels. Reduced hyperreflexia in astrocytic Rac1KO animals was accompanied by a loss of thin-shaped dendritic spine density on α-motor neurons in the ventral horn. In SCI-Rac1wt animals, as expected, we observed the development of dendritic spine dysgenesis on α-motor neurons associated with spasticity. As compared with WT animals, SCI animals with astrocytic Rac1KO expressed increased levels of the glial-specific glutamate transporter, glutamate transporter-1 in the ventral spinal cord, potentially enhancing glutamate clearance from the synaptic cleft and reducing hyperreflexia in astrocytic Rac1KO animals. Taken together, our findings show for the first time that Rac1 activity in astrocytes can contribute to hyperreflexia underlying spasticity following SCI. These results reveal an opportunity to target cell-specific molecular regulators of H-reflex excitability to manage spasticity after SCI.Significance Statement Spinal cord injury leads to stretch reflex hyperexcitability, which underlies the clinical symptom of spasticity. This study shows for the first time that astrocytic Rac1 contributes to the development of hyperreflexia after SCI. Specifically, astrocytic Rac1KO reduced SCI-related H-reflex hyperexcitability, decreased dendritic spine dysgenesis on α-motor neurons, and elevated the expression of the astrocytic glutamate transporter-1 (GLT-1). Overall, this study supports a distinct role for astrocytic Rac1 signaling within the spinal reflex circuit and the development of SCI-related spasticity.


Assuntos
Reflexo Anormal , Traumatismos da Medula Espinal , Camundongos , Masculino , Feminino , Animais , Astrócitos/metabolismo , Neurônios Motores/fisiologia , Medula Espinal/metabolismo , Animais Geneticamente Modificados , Reflexo H , Sistema X-AG de Transporte de Aminoácidos/metabolismo
7.
ACS Chem Neurosci ; 14(23): 4252-4263, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37994790

RESUMO

Glutamate transporters are responsible for active transport of the major excitatory neurotransmitter glutamate across the cell membrane, regulating the extracellular glutamate concentration in the mammalian brain. Extracellular glutamate levels in the brain are usually in the submicromolar range but can increase by exocytosis, inhibition of cellular uptake, or through glutamate release by reverse transport, as well as other mechanisms, which can lead to neurodegeneration and neuronal cell death. Such conditions can be encountered upon energy deprivation during an ischemic stroke. Here, we developed acetoxymethyl (AM) ester prodrug-like derivatives of excitatory amino acid transporter (EAAT) inhibitors that permeate the cell membrane and are activated, most likely through hydrolysis by endogenous cellular esterases, to form the active EAAT inhibitor. Upon increase in external K+ concentration, the inhibitors block glutamate efflux by EAAT reverse transport. Using a novel high-affinity fluorescent prodrug-like inhibitor, dl-threo-9-anthracene-methoxy-aspartate (TAOA) AM ester, we demonstrate that the precursor rapidly accumulates inside cells. Electrophysiological methods and fluorescence assays utilizing the iGluSnFR external glutamate sensor were used to demonstrate the efficacy of AM ester-protected inhibitors in inhibiting K+-mediated glutamate release. Together, our results provide evidence for a novel method to potentially prevent glutamate release by reverse transport under pathophysiological conditions in a model cell system, as well as in human astrocytes, while leaving glutamate uptake under physiological conditions operational. This method could have wide-ranging applications in the prevention of glutamate-induced neuronal cell death.


Assuntos
Ácido Glutâmico , Pró-Fármacos , Animais , Humanos , Ácido Glutâmico/metabolismo , Pró-Fármacos/farmacologia , Transporte Biológico , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ésteres , Mamíferos/metabolismo
8.
J Vet Med Sci ; 85(11): 1237-1244, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37866885

RESUMO

Cystine-glutamate transporter (xCT) is a plasma membrane transporter that imports cystine and indirectly contributes to the oxidative stress resistance associated with increased intracellular glutathione levels. Canine adipose-derived stem cells (CADSCs) include an xCT-positive subpopulation and show relatively low expression of osteogenic markers during in vitro osteogenic differentiation. Sulfasalazine (SSZ), a drug used to treat rheumatoid arthritis, suppresses xCT expression in cancer cells. In this study, we found that the SSZ treatment at 100 µM significantly suppressed xCT mRNA expression in CADSCs but did not significantly affect cell proliferation under the same conditions. Additionally, this treatment decreased the intracellular glutathione concentration. During in vitro osteogenic differentiation, the SSZ treatment at 50 µM and 100 µM significantly increased alizarin red staining and its quantification, as well as the concentration-dependent osteogenic differentiation markers (BMP1 and SPP) mRNA expression. Our results suggested that SSZ enhances the osteogenic differentiation potential of CADSCs and can potentially exhibit a superior therapeutic profile in canine bone regenerative medicine.


Assuntos
Osteogênese , Sulfassalazina , Animais , Cães , Sulfassalazina/farmacologia , Cistina , Diferenciação Celular , Glutationa , Sistema X-AG de Transporte de Aminoácidos , Células-Tronco , RNA Mensageiro
9.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722055

RESUMO

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Assuntos
Envelhecimento , Neurônios , Animais , Envelhecimento/genética , Sistema X-AG de Transporte de Aminoácidos , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidases , Proteínas de Caenorhabditis elegans/genética
10.
Drug Dev Res ; 84(7): 1411-1426, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602907

RESUMO

Drug addiction as a problem for the health of the individual and the society is the result of a complex process in which there is an interaction between brain nuclei and neurotransmitters (such as glutamate). ß-lactam antibiotics, due to their enhancing properties on the glutamate transporter glutamate transporter-1, can affect and counteract the addictive mechanisms of drugs through the regulation of extracellular glutamate. Since glutamate is a key neurotransmitter in the development of drug addiction, it seems that ß-lactams can be considered as a promising treatment for addiction. However, more research in this field is necessary to identify other mechanisms involved in their effectiveness. This article is a review of the studies conducted on the effect of ß-lactam administration in preventing the development of drug addiction, as well as their possible cellular and molecular mechanisms. This review suggests the clinical use of ß-lactam antibiotics that have weak antimicrobial properties (such as clavulanic acid) in the treatment of drug dependence.


Assuntos
Transtornos Relacionados ao Uso de Substâncias , beta-Lactamas , Humanos , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Monobactamas , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sistema X-AG de Transporte de Aminoácidos , Glutamatos
11.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628787

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived neural cells have started to be used in safety/toxicity tests at the preclinical stage of drug development. As previously reported, hiPSC-derived neurons exhibit greater tolerance to excitotoxicity than those of primary cultures of rodent neurons; however, the underlying mechanisms remain unknown. We here investigated the functions of L-glutamate (L-Glu) transporters, the most important machinery to maintain low extracellular L-Glu concentrations, in hiPSC-derived neural cells. We also clarified the contribution of respective L-Glu transporter subtypes. At 63 days in vitro (DIV), we detected neuronal circuit functions in hiPSC-derived neural cells by a microelectrode array system (MEA). At 63 DIV, exposure to 100 µM L-Glu for 24 h did not affect the viability of neural cells. 100 µM L-Glu in the medium decreased to almost 0 µM in 60 min. Pharmacological inhibition of excitatory amino acid transporter 1 (EAAT1) and EAAT2 suppressed almost 100% of L-Glu decrease. In the presence of this inhibitor, 100 µM L-Glu dramatically decreased cell viability. These results suggest that in hiPSC-derived neural cells, EAAT1 and EAAT2 are the predominant L-Glu transporters, and their uptake potentials are the reasons for the tolerance of hiPSC-derived neurons to excitotoxicity.


Assuntos
Ácido Glutâmico , Células-Tronco Pluripotentes Induzidas , Humanos , Ácido Glutâmico/toxicidade , Neurônios , Sistema X-AG de Transporte de Aminoácidos , Transporte Biológico , Transportador 1 de Aminoácido Excitatório
12.
Mol Neurobiol ; 60(12): 7166-7184, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37541967

RESUMO

Pain sufferer usually show an aversion to the environment associated with pain, identified as pain aversion. The amygdala, an almond-shaped limbic structure in the medial temporal lobe, exerts a critical effect on emotion and pain formation. However, studies on inflammatory pain-induced aversion are still relatively limited, and the available evidence is not enough to clarify its inherent mechanisms. Proteomics is a high-throughput, comprehensive, and objective study method that compares the similarities and differences of protein expression under different conditions to screen potential targets. The current study aimed to identify potential pivotal proteins in the amygdala of rats after complete Freund's adjuvant (CFA)-induced pain aversion via proteomics analysis. Immunohistochemistry was performed to confirm the expression of glutamate transporter-1 (GLT-1) in the amygdala during different periods of pain aversion. Thirteen proteins were found to be different between the day 2 and day 15 groups. Among the 13 differentially expressed proteins, Q8R64 denotes GLT-1, which utilises synaptic glutamate to remain optimal extracellular glutamic levels, thereby preventing accumulation in the synaptic cleft and consequent excitotoxicity. The variation in GLT-1 expression was correlated with the variation tendency of pain aversion, which implies a potential link between the modulation of pain aversion and the excitability of glutamatergic neurons. This study demonstrated that exposure to inflammatory pain results in aversion induced from pain, leading to extensive biological changes in the amygdala.


Assuntos
Dor , Proteômica , Ratos , Animais , Adjuvante de Freund/metabolismo , Dor/metabolismo , Tonsila do Cerebelo/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Inflamação/metabolismo
13.
J Gen Physiol ; 155(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37477643

RESUMO

Light responses of rod photoreceptor cells in the retina are encoded by changes in synaptic glutamate release that is in turn shaped by reuptake involving EAAT5 plasma membrane glutamate transporters. Heterologously expressed EAAT5 activates too slowly upon glutamate binding to support significant uptake. We tested EAAT5 activation in mouse rods in vivo by stimulating glutamate transporter anion currents (IA(glu)) with UV flash photolysis of MNI-glutamate, varying flash intensity to vary glutamate levels. Responses to uncaging rose rapidly with time constants of 2-3 ms, similar to IA(glu) events arising from spontaneous release. Spontaneous release events and IA(glu) evoked by weak flashes also declined with similar time constants of 40-50 ms. Stronger flashes evoked responses that decayed more slowly. Time constants were twofold faster at 35°C, suggesting that they reflect transporter kinetics, not diffusion. Selective EAAT1 and EAAT2 inhibitors had no significant effect, suggesting IA(glu) in rods arises solely from EAAT5. We calibrated glutamate levels attained during flash photolysis by expressing a fluorescent glutamate sensor iGluSnFr in cultured epithelial cells. We compared fluorescence at different glutamate concentrations to fluorescence evoked by photolytic uncaging of MNI-glutamate. The relationship between flash intensity and glutamate yielded EC50 values for EAAT5 amplitude, decay time, and rise time of ∼10 µM. Micromolar affinity and rapid activation of EAAT5 in rods show it can rapidly bind synaptic glutamate. However, we also found that EAAT5 currents are saturated by the synchronous release of only a few vesicles, suggesting limited capacity and a role for glial uptake at higher release rates.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 5 de Aminoácido Excitatório/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retina/metabolismo
14.
Ann Clin Transl Neurol ; 10(9): 1695-1699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452008

RESUMO

Dravet syndrome (DS) is a monogenic, often refractory, epilepsy resultant from SCN1A haploinsufficiency in humans. A novel therapeutic target in DS that can be engaged in isolation or as adjunctive therapy is highly desirable. Here, we demonstrate reduced expression of the rodent glutamate transporter type 1 (GLT-1) in a DS mouse model, and in wild type mouse strains where Scn1a haploinsufficiency is most likely to cause epilepsy, indicating that GLT-1 depression may play a role in DS seizures. As GLT-1 can be upregulated by common and safe FDA-approved medications, this strategy may be an attractive, viable, and novel avenue for DS treatment.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Transportador 2 de Aminoácido Excitatório , Animais , Humanos , Camundongos , Sistema X-AG de Transporte de Aminoácidos , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo
15.
Neurochem Int ; 169: 105587, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495172

RESUMO

Glutamate is a crucial neurotransmitter for hearing transduction in the cochlea, but excess glutamate is detrimental to the survival of cochlear sensory cells. Glutamate-aspartate transporter (GLAST) is the major transporter for glutamate removal; however, its role in aminoglycoside-induced hair cell loss is not well studied. In the present study, we first investigated the localization and expression of GLAST over the course of development of the mouse cochlea, and we found that inhibition of GLAST increased hair cell death. However, when the glutamate receptor NMDAR was inhibited by D-AP5, hair cell death was no longer increased by the GLAST inhibitor. Our results indicate that GLAST inhibition aggravates damage to cochlear hair cells, which may occur via NMDAR, and this suggests new clinical strategies for ameliorating the ototoxicity associated with the dysfunction of glutamate metabolism.


Assuntos
Aminoglicosídeos , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Células Ciliadas Auditivas/metabolismo , Ácido Glutâmico/metabolismo
16.
J Neurosci ; 43(49): 8294-8305, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37429719

RESUMO

Dopamine neurons (DANs) are extensively studied in the context of associative learning, in both vertebrates and invertebrates. In the acquisition of male and female Drosophila olfactory memory, the PAM cluster of DANs provides the reward signal, and the PPL1 cluster of DANs sends the punishment signal to the Kenyon cells (KCs) of mushroom bodies, the center for memory formation. However, thermo-genetical activation of the PPL1 DANs after memory acquisition impaired aversive memory, and that of the PAM DANs impaired appetitive memory. We demonstrate that the knockdown of glutamate decarboxylase, which catalyzes glutamate conversion to GABA in PAM DANs, potentiated the appetitive memory. In addition, the knockdown of glutamate transporter in PPL1 DANs potentiated aversive memory, suggesting that GABA and glutamate co-transmitters act in an inhibitory manner in olfactory memory formation. We also found that, in γKCs, the Rdl receptor for GABA and the mGluR DmGluRA mediate the inhibition. Although multiple-spaced training is required to form long-term aversive memory, a single cycle of training was sufficient to develop long-term memory when the glutamate transporter was knocked down, in even a single subset of PPL1 DANs. Our results suggest that the mGluR signaling pathway may set a threshold for memory acquisition to allow the organisms' behaviors to adapt to changing physiological conditions and environments.SIGNIFICANCE STATEMENT In the acquisition of olfactory memory in Drosophila, the PAM cluster of dopamine neurons (DANs) mediates the reward signal, while the PPL1 cluster of DANs conveys the punishment signal to the Kenyon cells of the mushroom bodies, which serve as the center for memory formation. We found that GABA co-transmitters in the PAM DANs and glutamate co-transmitters in the PPL1 DANs inhibit olfactory memory formation. Our findings demonstrate that long-term memory acquisition, which typically necessitates multiple-spaced training sessions to establish aversive memory, can be triggered with a single training cycle in cases where the glutamate co-transmission is inhibited, even within a single subset of PPL1 DANs, suggesting that the glutamate co-transmission may modulate the threshold for memory acquisition.


Assuntos
Drosophila , Olfato , Animais , Feminino , Masculino , Drosophila/fisiologia , Olfato/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Penicilinas/metabolismo , Glutamatos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Corpos Pedunculados/metabolismo , Drosophila melanogaster/metabolismo
17.
Cells ; 12(12)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37371080

RESUMO

Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the 'average' morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamate-transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo
18.
Life Sci ; 328: 121876, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348813

RESUMO

AIMS: Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS: In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS: The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE: These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.


Assuntos
Alcoolismo , Etanol , Ratos , Feminino , Animais , Alcoolismo/tratamento farmacológico , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Doenças Neuroinflamatórias , Aldeído-Desidrogenase Mitocondrial , Doença Crônica , Sistema X-AG de Transporte de Aminoácidos , Recidiva
19.
Brain Res Bull ; 200: 110683, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301482

RESUMO

Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ceftriaxona/farmacologia , Microglia/metabolismo , Sinaptofisina/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Macrófagos/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Peptídeos beta-Amiloides/metabolismo
20.
Nat Commun ; 14(1): 2579, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142617

RESUMO

Excitatory amino acid transporters (EAATs) uptake glutamate into glial cells and neurons. EAATs achieve million-fold transmitter gradients by symporting it with three sodium ions and a proton, and countertransporting a potassium ion via an elevator mechanism. Despite the availability of structures, the symport and antiport mechanisms still need to be clarified. We report high-resolution cryo-EM structures of human EAAT3 bound to the neurotransmitter glutamate with symported ions, potassium ions, sodium ions alone, or without ligands. We show that an evolutionarily conserved occluded translocation intermediate has a dramatically higher affinity for the neurotransmitter and the countertransported potassium ion than outward- or inward-facing transporters and plays a crucial role in ion coupling. We propose a comprehensive ion coupling mechanism involving a choreographed interplay between bound solutes, conformations of conserved amino acid motifs, and movements of the gating hairpin and the substrate-binding domain.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Ácido Glutâmico , Humanos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transporte de Íons , Íons/metabolismo , Ácido Glutâmico/metabolismo , Sódio/metabolismo , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...